Photosynthetic traits of Sphagnum and feather moss species in undrained, drained and rewetted boreal spruce swamp forests

نویسندگان

  • Laura Kangas
  • Liisa Maanavilja
  • Tomáš Hájek
  • Eija Juurola
  • Rodney A Chimner
  • Lauri Mehtätalo
  • Eeva-Stiina Tuittila
چکیده

In restored peatlands, recovery of carbon assimilation by peat-forming plants is a prerequisite for the recovery of ecosystem functioning. Restoration by rewetting may affect moss photosynthesis and respiration directly and/or through species successional turnover. To quantify the importance of the direct effects and the effects mediated by species change in boreal spruce swamp forests, we used a dual approach: (i) we measured successional changes in moss communities at 36 sites (nine undrained, nine drained, 18 rewetted) and (ii) photosynthetic properties of the dominant Sphagnum and feather mosses at nine of these sites (three undrained, three drained, three rewetted). Drainage and rewetting affected moss carbon assimilation mainly through species successional turnover. The species differed along a light-adaptation gradient, which separated shade-adapted feather mosses from Sphagnum mosses and Sphagnum girgensohnii from other Sphagna, and a productivity and moisture gradient, which separated Sphagnum riparium and Sphagnum girgensohnii from the less productive S. angustifolium, S. magellanicum and S. russowii. Undrained and drained sites harbored conservative, low-production species: hummock-Sphagna and feather mosses, respectively. Ditch creation and rewetting produced niches for species with opportunistic strategies and high carbon assimilation. The direct effects also caused higher photosynthetic productivity in ditches and in rewetted sites than in undrained and drained main sites.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Will changes in root-zone temperature in boreal spring affect recovery of photosynthesis in Picea mariana and Populus tremuloides in a future climate?

Future climate will alter the soil cover of mosses and snow depths in the boreal forests of eastern Canada. In field manipulation experiments, we assessed the effects of varying moss and snow depths on the physiology of black spruce (Picea -mariana (Mill.) B.S.P.) and trembling aspen (Populus tremuloides Michx.) in the boreal black spruce forest of western Québec. For 1 year, naturally regenera...

متن کامل

NOTE / NOTE Sphagnum mosses limit total carbon consumption during fire in Alaskan black spruce forests

The high water retention of hummock-forming Sphagnum species minimizes soil moisture fluctuations and might protect forest floor organic matter from burning during wildfire. We hypothesized that Sphagnum cover reduces overall forest floor organic matter consumption during wildfire compared with other ground-layer vegetation. We characterized variability in soil organic layer depth and organic m...

متن کامل

Automated measurements of CO2 exchange at the moss surface of

change system to measure the net exchange of CO2 at the surfaces of three shady feather moss and three exposed sphagnum moss sites in a black spruce forest during 35 days at the end of the 1995 growing season. Midday gross photosynthesis was 0.5 to 1.0 μmol m s by feather moss and 0.5 to 2.5 μmol m s by sphagnum moss. Photosynthesis by sphagnum moss was reduced by approximately 70% at 0 °C, and...

متن کامل

Measurement and modelling of bryophyte evaporation in a boreal forest chronosequence

The effects of changing climate and disturbance on forest water cycling are not well understood. In particular, bryophytes contribute significantly to forest evapotranspiration in poorly drained boreal forests, but few studies have directly measured this flux and how it changes with stand age and soil drainage. We measured bryophyte evaporation (E) in the field (in Canadian Picea mariana forest...

متن کامل

The role of mosses in ecosystem succession and function in Alaska’s boreal forest1

Shifts in moss communities may affect the resilience of boreal ecosystems to a changing climate because of the role of moss species in regulating soil climate and biogeochemical cycling. Here, we use long-term data analysis and literature synthesis to examine the role of moss in ecosystem succession, productivity, and decomposition. In Alaskan forests, moss abundance showed a unimodal distribut...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014